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SUMMARY

A novel, fully-analytical design sensitivity formulation for transient, turbulent, free surface flows is
derived and implemented in the context of finite element analysis. The time-averaged, turbulent form of
the Navier–Stokes equations are solved using a mixing length model, in conjunction with the volume of
fluid (VOF) method to model the free surface movement. The design derivatives of these governing
equations are computed and solved to find the analytical sensitivities of the fluid position, velocity and
pressure fields with respect to shape design variables. The computational efficiency produced by
evaluating the sensitivities analytically is demonstrated. The design of the runner and gating system of a
simple block casting is presented as an example application for using sensitivity information in design.
The analytical sensitivity routine is coupled to a numerical optimizer to yield an automated method for
optimal design of the casting rigging system. The results produce runner shapes which eliminate mold-gas
aspiration. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Sand casting is an example of a material processing operation involving free-surface fluid flow.
Molten material is poured into a shaped cavity (mold), via a delivery system of ducts and
channels, with the fluid displacing the air within. Figure 1 shows a typical arrangement of
components in a sand casting mold. The shape, size and placement of the sprue, runners and
ingates are critical to the entire process, because they determine, among other things, the rate,
uniformity and smoothness with which material is delivered to the mold cavity. The volume of
material in the rigging system also represents additional cost in the process. The uniformity
and smoothness of the material delivery have important implications for the quality of the final
part. Therefore, the design of the rigging system to achieve quality and production goals is of
prime importance.

Traditionally, runner and gating systems for foundry castings have been designed using
generic design rules, such as those compiled by the American Foundryman’s Society [1].
Originally developed five decades ago, these rules provide guidelines for the sizing of sprues,
runners and gates. The objective of these designs is to provide smooth, non-agitated delivery
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of metal into the mold, while avoiding defects due to events such as premature solidification
and gas aspiration in the runners. The design rules currently used are based primarily on
Bernoulli’s equation, along with empirical data [2,3] gathered using simple shapes. While these
rules produce satisfactory results for many castings, more complex castings lead to many, and
sometimes conflicting requirements to provide a sound casting. Computer simulation and
modeling can provide valuable insight into rigging system design for these demanding
applications.

The volume of fluid (VOF) method [4] has made it computationally feasible to model mold
filling in realistic geometries, because of its ability to accommodate the large surface deforma-
tions commonly encountered in mold filling. This is in contrast to deformable grid techniques
[5,6] for simulating free-surface flows, which perform best when free-surface movements are
relatively limited.

The filling process can sometimes be modeled, assuming that the flow is inviscid and
irrotational [7]. In this case, the VOF equation can be used in conjunction with Bernoulli’s
equation to simulate mold filling. Although this formulation has the advantage of being less
computationally intensive than solving the full Navier–Stokes equations, numerical and
physical modeling studies [8,9] have shown that viscous effects cannot be neglected in many
castings. At the large Reynolds numbers encountered in metal casting, the flow can be assumed
to be inviscid in the core. However, near the walls of the metal delivery system, viscous effects
predominate. Since defects due to mold erosion, gas aspiration, turbulent eddy formation and
other phenomena are correlated to the processes occurring at the wall, it seems likely that
inviscid calculations will fail to correctly predict these effects.

Design of a successful rigging system requires consideration of a number of competing
phenomena. For example, although rapid filling of the mold is desirable, it is constrained by
the need to avoid agitation of the metal flow and mold erosion. The latter has been correlated
with the shear strength of the sand and the liquid metal velocity [10].

Avoiding agitation of the metal stream is another primary goal of runner design, because of
the many potential problems that can otherwise occur. For example, agitation can cause
surface oxides to be entrained. Entrained oxides in the casting reduce both fatigue and ultimate
strength. This problem is of particular importance in aluminum alloy casting [1].

The formation of vortices and eddies can both lead to an agitated flow stream. In regions
of low pressure, air and mold gases can be aspirated into the metal stream from the mold itself.
This is the reason that, e.g. the sprue is tapered. Similarly, the sprue should have a square
cross-section to suppress the formation of vortices.

We may summarize these statements and a few other rules as objectives and constraints:

Figure 1. Schematic diagram showing components of a typical sand casting.
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1. Maximize casting yield by reducing total gating system volume
2. Minimize mold and core erosion
3. Minimize agitation of metal stream
4. Minimize vortex and eddy formation in rigging system

It is a challenging problem to determine the shapes of the runners, sprues and ingates to fill
the mold quickly, while satisfying constraints on overall size and mold erosion. Clearly, it is
not always possible to accomplish this either intuitively or by applying rules derived for simple
shapes, and much trial and error is still necessary. One objective of this work is to develop a
new, more direct method for casting-rigging design. The design of the delivery system is treated
as an optimization problem, wherein a systematic method for optimally sizing the runners and
ingates is applied. This method requires an efficient means for computing the sensitivities of
the free surface flow with respect to the design parameters describing the runner and ingate
shapes. By coupling this sensitivity information with a gradient-based numerical optimization
algorithm, an automated system for casting rigging design is possible. Bradley [11] suggested
a similar approach, using simple hydraulic models to model mold filling, although, to our
knowledge, this technique was never implemented.

The key component in this design system is the ability to compute the flow and its sensitivity
to various design parameters. Analytical methods for computing the design sensitivities, by
solving the design derivatives of the governing finite element equations, have been successfully
applied in past work. In particular, this method has found widespread application in the field
of structural mechanics. Significant contributions have been made in the areas of sensitivity
analysis for non-linear structural mechanics [12,13], vibration control [14,15], and geometri-
cally non-linear systems [16] to name a few. Additionally, sensitivity methods have been
formulated for linear [17–19] and non-linear [20,21] thermal systems. Furthermore, previous
researchers have developed semi-analytical [22,23] and fully-analytical [24] methods for com-
puting flow sensitivities without free surfaces [24].

In this work, analytical sensitivity analysis methods have been developed for mold filling
applications. Based on the preceding discussion, inclusion of viscous terms in near-wall regions
is important. The VOF method, in conjunction with the Navier–Stokes equations, is chosen
for modeling the free surface flow in mold filling. A mixing-length model is used for closure
of the time-averaged Navier–Stokes equations, to account for turbulence effects. Expressions
for the design derivatives of the finite element form of these models are developed and then
implemented by modifying the commercial CFD code FIDAP™ [25]. This approach has been
used successfully in the past to compute the sensitivities for steady, turbulent flows without
filling [24], and for thermal problems involving solidification [26,27]. The optimal design of a
rigging system for a simple block casting is then presented as an example using these newly
developed algorithms.

2. MODEL FORMULATION

A mathematical model is constructed to simulate the transient, free-surface flow which occurs
in casting mold filling. This model is formulated by solving the mass and momentum balance
equations in a domain representing the casting mold using the finite element method. The
sensitivities are subsequently evaluated by solving for the design derivatives of the discretized
governing equations on the computational domain.
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2.1. Mass, momentum and energy equations

The balance of mass, momentum and energy for an incompressible Newtonian fluid may be
written as follows (see Appendix A for a list of symbols):

9 ·u=0, (1)

r
!(u
(t

+u ·9u
"

= −9p+9 · [m(9u+ (9u)T)]+rg, (2)

where u is the continuum velocity vector, p is the continuum pressure, r is the fluid density,
m is the molecular viscosity of the fluid, and g is the bodyforce vector. Relevant dimensionless
groups may be computed to assess the importance of various phenomena. We may compute a
characteristic flow velocity (Uc) for the runner system by equating inertial and gravitational
effects in the sprue (i.e. set the Froude number [28], Fr=1). Assuming a sprue height (L) of
150 mm leads to a value of Uc=1200 mm s−1.

The relative importance of inertial to viscous forces in the flow is estimated from the
characteristic Reynolds number (Re=rUcd/m) based on the diameter at the sprue base (d) and
Uc. For aluminum, Re:60000, which indicates that the flow will be turbulent [28,29].
Similarly, the importance of surface tension is indicated by the Weber number (We [28]), which
evaluates to 1000, indicating that surface tension may be neglected relative to inertia.

The flow may be considered to be isothermal during mold filling because the temperature
change in the characteristic filling time does not cause a significant change in the viscosity of
the liquid metal. As such, the temperature equation is uncoupled from the momentum
equation. Also, the quantity of heat convected into the mold cavity compared with the heat
loss by conduction to the sand, normal to the predominant flow direction, is estimated by the
Graetz number (Gz=Uch/a). If h is the typical runner thickness, the Graetz number of 1000
indicates that heat is transported to the mold cavity faster than it can be lost by diffusion to
the sand. Accordingly, the energy equation is neglected in this work.

To account for high Reynolds number effects, a mixing length turbulence model [29,30] is
used. In this model, the turbulent component of viscosity mt is assumed to be related to the
magnitude of the local shear rate through a mixing length, lt:

mt=rl t
2S, (3)

where

S2=g; :g; , (4)

where g; is the strain-rate tensor. The mixing length hypothesis can be applied with great
success for relatively simple flows [30]. In boundary layer flows, a ramp function for specifying
the mixing length, such as that illustrated in Figure 2, has been found to be satisfactory [30].
The model has three parameters: d, the distance from the wall to a point where the velocity is
within 1% of the free stream velocity, and two empirical constants, k=0.435 and l=0.09, the
values of which, for simple flows with limited swirl, were given by Patankar and Spalding [31].

2.2. VOF equation

The VOF method [4] is used to compute the location and movement of the fluid front. u is
an order parameter used to track the location of the flow front. Within the fluid u has a value
of unity, and outside the fluid u is zero. u is convected with the fluid, but not diffused, and
therefore satisfies the equation
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Figure 2. Mixing-length distribution in wall boundary layers.

(u

(t
+u ·9u=0. (5)

Introducing such a form for u can result in a diffuse interface, depending on the solution
method. The VOF method is implemented in FIDAP [32] by enforcing Equation (5) on each
element as a control volume. To perform volume tracking, the filling fraction in element i,
fi� [0, 1], is defined as

fi=
1
Vi

&
Vi

u dVi, (6)

where fi=1 denotes a full element, fi=0 an empty element, and fractional values denote
partially filled elements. Performing a mass balance on an element produces an explicit
evolution equation for the element fill state:

f i
n+1= f i

n+
�Dtfill

Vi

%
k

Qik
n n, (7)

where the superscripts refer to time steps, and Qik
n is the flow rate of fluid into element i,

through face k at the nth time step. The flow rate Qik
n can be further expressed as the product

of geometric and flow parameters, giving

Qik
n = −aikqk

n= −aik

&
k

un · n̂ dV, (8)

where un is the velocity solution at the nth time step, and aik� [0, 1] is a geometric factor
representing the fraction of side k, in element i, across which fluid flows. aik is determined from
the ‘reconstruction’ or spatial location of fluid in the mesh at time step n. This reconstruction
is determined from the fill state for the element i, and the fill states of its neighboring elements.
The reader is referred to the FIDAP v7.5 Update Manual [32] for an illustration of all the
possible reconstructions for a quadrilateral element. These reconstruction rules can also be
formulated for 3D cases. The underlying premise is that each case represents a unique filling
situation, and the rules must be exhaustive.

Equation (7) does not guarantee that the filling fraction at the next time step, f i
n+1 will take

on a value between 0 and 1. In this implementation, a ‘flux-limiting’ approach is used to ensure
that elements are not over-filled or over-emptied. Depending on the fill states of neighboring
elements and the value of a test quantity, the geometric factor aik is adjusted so that the exiting
flux results in a fill fraction of exactly 0 or 1 in the extreme cases.
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Finally, because an explicit scheme is used to compute the fill fraction, the filling time step
size, Dtfill, is limited by the Courant–Friedrichs–Lewy (CFL) condition [33] for numerical
stability. The CFL condition is modified by selection of the Courant number GB1, for
non-linear, multi-dimensional problems, so that the maximum usable time step is given by

Dtfill5mini,k
�GVi

Qik
n

�
. (9)

It should be noted that Dtfill is proportional to the size of the elements (Vi). Equation (9)
therefore ensures that the filling front does not advance by more than one element in one time
step.

The time step used to integrate the Navier–Stokes equations, Dtflow is selected to control the
local time truncation error, and is dependent on the velocity solution at three time steps. If the
maximum desirable truncation error is eDt, the time step size to be used for the next step is
computed using

Dt flow
n =Dt flow

n−1� eDt

dn
n1/2

, (10)

where dn is the estimate of the time truncation error at the current step. The reader is
referred to the FIDAP Theoretical Manual for full details of the variable time step algorithm.
However, it is clear that Dtfill and Dtflow may differ. If DtfillBDtflow, then several filling steps
may be taken for each flow time step in a subcycling strategy. However, for our purposes,
subcycling is not allowed. Instead, the minimum of Dtfill and Dtflow is used to integrate both the
Navier–Stokes equations and the VOF filling equation. This procedure is adopted to eliminate
the solution sensitivity dependence on the time step size.

2.3. Finite element discretization and solution

The Galerkin finite element method is used to solve the mass and momentum balance
equations for the velocity and pressure fields. Applying this formulation converts the govern-
ing partial differential equations into a set of non-linear algebraic matrix equations. In
two-dimensions, these governing finite element equations are

Ci
TUi=0, (11)

M
(U1

(t
+ [A1(U1)+A1(U2)]+ [2D11+D22]U1+D12U2−C1P=F1, (12)

M
(U2

(t
+ [A2(U1)+A2(U2)]+ [D11+2D22]U2+D21U1−C2P=F2, (13)

where Ui is the nodal solution vector for velocity in the i-direction, while P contains the nodal
pressures. Note that the temperature degree of freedom and the energy equation are absent,
because the mold filling is assumed to be isothermal. The various matrices and vectors in
Equations (11)–(13) are evaluated through volume (V) and surface (V) integrals, as

Ci=
&

V

r
(f

(xi

cT dV, (14)

M=
&

V

rffT dV, (15)
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Ai(Uj)=
&

V

rfuj

(fT

(xj

dV, (16)

Dij=
&

V

m
(f

(xj

(fT

(xi

dV, (17)

Fi=
&

V
sif dV+

&
V

rgif dV. (18)

Here, si denotes applied tractions resolved in the i-direction. f and c are vectors of the
velocity and pressure basis functions, defined by

p=c ·P, (19)

and

ui=f ·Ui. (20)

The velocity basis functions are chosen to be one-order higher polynomial interpolation than
the pressure basis functions, to stabilize the solution scheme [34]. The reader is referred to
standard finite element texts [35,36] for full details of this method.

When a suitable time-integration scheme is applied to Equations (11)–(13), the governing
finite element equations may be written in an explicit form as

K(Cj
n+1, Dt)Cj

n+1=F(Cn, Dt), (21)

where

Cj
n+1=Í

Á

Ä

U1j
n+1

U2j
n+1

Pj
n+1

Ì
Â

Å
.

Cj
n+1 is the jth estimate of the solution vector at the nth+1 time step and Dt is the time

step size. K is a matrix containing contributions from the non-linear advective and diffusive
matrices A and D, as well as from the mass and pressure matrices M and C. It may be
expressed as (ignoring subscripts for now)

K=
M
Dt

+A(U)+D(U)+C. (22)

Equation (21) is non-linear, and may be solved iteratively using the Newton–Raphson
method. For this purpose, Equation (21) is rewritten in residual form:

Rj(Cj
n+1, Cn, Dt)=K(Cj

n+1, Dt)Cj
n+1−F(Cn, Dt)=0, (23)

where subscripts denote the iteration number and superscripts the time step number. A
truncated Taylor series expansion for Rj about Cj

n+1 gives

Rj=Rj−1+
(Rj−1

(Cj
n+1 DCj=0, (24)

which gives

−
�(Rj−1

(Cj
n+1

n−1

DCj=Rj−1. (25)

After solving Equation (25) for DCj, an update for Cj
n+1 is obtained from
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Cj
n+1=Cj−1

n+1+DCj.

Convergence is declared when RjBeR, and DCjBeC.

3. ANALYTICAL SENSITIVITY FORMULATION

Once the solution is computed, the outcome, as measured by a quantifiable scalar objective
G(C, b) may be evaluated. G generally depends on the solution C and on various design
parameters b�Rn, and is assumed to be continuous in design space. The optimization problem
requires the minimization (or maximization) of G, subject to certain constraints, which may be
written in a general form as Fi(C, b)=0. Gradient-type methods are available to efficiently
traverse the design space to minimize (or maximize) G [37]. The design sensitivity, i.e. the
gradient of G with respect to b, may be computed by application of the chain rule:

dG
dbm

=
(G
(C

dC

dbm

+
(G
(bm

, (26)

where bm is the mth component design parameter belonging to the design vector b. Since G is
an explicit function of C and b, (G/(C and (G/(bm can be evaluated directly. However, the
challenge in computing dG/dbm analytically lies in computing the response sensitivities
dC/dbm. This latter term describes how the solution vector (Ui and P) varies with the design
variables.

In this work, the direct differentiation method is used to compute the solution sensitivity
dC/dbm [38]. The first step is to solve the forward problem for a base design. The preceding
section detailed the formulation and solution of this non-linear problem. Once the solution is
found, we have:

R(Cn+1(b), Cn(b), b)=0. (27)

Note that the design vector has been added to the residual definition to emphasize the implicit
dependence of the solution on b. Differentiation of Equation (27) with respect to bm yields

dR
dbm

=
(R
(Cn+1

dCn+1

dbm

+
(R
(Cn

dCn

dbm

+
(R
(bm

=0. (28)

Rearranging, we have� (R
(Cn+1

n dCn+1

dbm

= −
� (R
(Cn

dCn

dbm

+
(R
(bm

n
. (29)

Note that (R/(Cn+1 is the same tangent stiffness used to obtain the forward solution
(Equation (25)). The right-hand-side is called the pseudo-load vector. Thus, if a scheme such
as LU decomposition is used to solve the linearized forward problem given by Equation (25),
the sensitivity of the solution to the design variables, dCn+1/dbm, is readily (and efficiently)
computed by back-substitutions of the pseudo-load terms [((R/(Cn+1)(dCn/dbm)+(R/(bm ]
into the previously decomposed tangent stiffness matrix from the forward solution. The reader
is referred to previous works for further details [24,27,38]. Note that even if iterative linear
solvers, such as preconditioned conjugate-gradient methods are used to solve the forward
problem, the same preconditioner can be used to solve for the sensitivities.
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3.1. Pseudo-loads for filling problems

The pseudo-load in Equation (29) consists of two quantities. The term ((R/(Cn)(dCn/dbm)
contains the dependence of the response sensitivity at the current time step on those
determined at previous time steps. Evaluation of this term is straightforward. The following
sections outline the derivation of terms which go into forming the second quantity (R/(bm for
free-surface, turbulent filling problems. These form the bulk of this work.

The residual R is derived only from the Navier–Stokes equations and not from the filling
equation, because the latter is linear and uncoupled from the Navier–Stokes equations (see
Equation (7)), and it is solved explicitly. Thus, the methodology described in the preceding
section refers to computation of the velocity and pressure sensitivities only. The relationship
between the filling sensitivity and the velocity sensitivity is somewhat more complex, and it is
described in Section 3.1.3.

To determine which quantities are needed to compute the pseudo-load, Equation (23) is
differentiated with respect to a design variable:

(R
(bm

=
(K
(bm

Cn+1−
(F
(bm

. (30)

For the sake of brevity, the discussion is limited to the contribution of the diffusive term D to
K (see Equations (17) and (22)), and the evaluation of (D/(bm. The results for the remaining
terms are given in detail for non-filling problems in the work by Wang et al. [24].

The domain may itself depend on the design variables; therefore, the reference volume Vo is
introduced and the integral is transformed to the reference domain:

Dij=
&

Vo

mJjn
−1 (f

(jn

(fT

(jp

J ip
−T �J� dVo, (31)

where V is the element volume in physical space, Vo is the volume in reference space and Jjn

is the Jacobian of the transformation from the physical ( j ) to the reference (n) space. f

denotes the finite element basis functions, and jn denotes the isoparametric co-ordinates.
Taking the partial derivative of Dij with respect to bm yields

(Dij

(bm

=
&

Vo

� (m
(bm

Jjn
−1 (f

(jn

(fT

(jp

J ip
−T �J�� dVo

+
&

Vo

m
�(Jjn

−1

(bm

(f

(jn

(fT

(jp

J ip
−T+Jjn

−1 (f

(jn

(fT

(jp

(Jip
−T

(bm

��J� dVo

+
&

Vo

mJjn
−1 (f

(jn

(fT

(jp

J ip
−T ( �J�
(bm

dVo. (32)

The new terms required to evaluate this expression are (m/(bm and derivatives related to the
Jacobian.

3.1.1. Design deri6ati6e of 6iscosity. The viscosity is defined as the sum of the molecular
viscosity and a turbulent component m=mo+mt, so that from Equation (3) we have

(m

(bm

=
(mt

(bm

=r
�

2lt
(lt
(bm

S+ l t
2 (S
(bm

�
. (33)

To evaluate this expression, we must look more closely at the mixing length. The mixing length
sensitivity was derived by Wang [24] and is based on Nikuradse’s formula for pipe flows [30].
Here, a general form of the mixing length is used, which is based on empirical results for
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boundary-layer channel flows [30,31]. In the finite element implementation of this model the
mixing length is computed on an element-by-element basis. First, the distance of each element
from a designated wall is computed, and then the appropriate mixing length for fluid in that
location is computed according to the model shown in according to Figure 2. Specifically,

lt=min[kli, ld ], (34)

where li is the distance between the centroid of element i and the nearest wall. k and l are
fixed, however, the value of d is specified in advance for major regions in the flow path. In the
runners, for example, d is half the local runner width, in the mold cavity, d is half the cavity
width, etc. Therefore, if lt=ld, then (lt/(bm=0. On the other hand, if lt=kli, then the mixing
length sensitivity is an algebraic function of the nodal locations, the domain parameterization
and the design velocity field [39–41]. The design velocity is defined as dx/db, the derivative of
nodal co-ordinates with respect to design variables. Thus, the mixing length sensitivity is
non-zero only for those design variables which describe shape.

In addition to the mixing length sensitivity, (mt/(bm also depends on (S/(bm. The magnitude
of the strain rate tensor is given by Equation (4). To compute the sensitivity of the magnitude
of the strain rate tensor, the sensitivity of each component of the tensor must be computed.
For this purpose, we write

gij=
(ui

(xj

+
(uj

(xi

=%
n

�(fn

(xj

Uin+
(fn

(xi

Ujn

�
=%

n

�
Jjk

−1 (fn

(jk

Uin+Jik
−1 (fn

(jk

Ujn

�
. (35)

Then, differentiating gij with respect to bm,

(gij

(bm

=%
n

�((Jjk
−1)
(bm

(fn

(jk

Uin+
((Jik

−1)
(bm

(fn

(jk

Ujn

n
. (36)

Once again, we find derivatives of the Jacobian. Expressions for the design derivative of the
Jacobian have been derived previously for fixed domains [24], but further work is required to
consider filling problems.

3.1.2. Design deri6ati6e of Jacobian for filling problems. The filling fraction fi affects the flow
equations by modifying the domain over which the flow equations are solved. For partially
filled elements, the finite element quantities are computed by performing the integrations over
a reduced element volume. The ratio of the volume of this reduced element Vr to the parent
element Vi is the filling fraction for that element (see Figure 3).

As an example, consider again the formation of the diffusive finite element matrix, Dij

(Equation (31)). In this equation J accounts only for the difference in shape and size of the
element in the physical space to that in the reference domain. However, for a partially filled
element this Jacobian must also account for the reduced size of the element in real space. In
Figure 3, fJ and pfJ represent the transformations for full and partially full elements
respectively. The difference between these terms depends on the filling fraction for that
element, fi

Thus, in a filling problem, (J/(bm in Equation (32) is replaced by ((pfJ)/(bm. The first
contribution to ((pfJ)/(bm comes from the domain parameterization representing the sensitivity
due to external changes in the shape of the domain, and is accounted for in the previous work
[24]. The second contribution arises from the sensitivity of the filling front position to any
design variable, not just shape. The design derivatives of pfJ−T and �pfJ � are both based on the
term ((pfJ)/(bm, so the evaluation of the latter will be the focus of discussion.
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Consider the Jacobian of transformation from the physical j-frame to the reference k-frame
for a partially filled element at a single integration point, denoted by l :

pf Jjkl= %
nnod

n

�(fnl

(jk

�
rxjn, (37)

where ((rxjn)/(bm is the vector of the j-direction co-ordinates of node n of the reduced element
in physical space. (fnl/(jk is the derivative of the shape function associated with node n, with
respect to the isoparametric co-ordinate jk at Gauss point l.

Taking the derivative with respect to a design variable:

((pf Jjkl)
(bm

= %
nnod

n

�(fnl

(jk

� ((rxjn)
(bm

, (38)

where rxjn consists of the two contributions mentioned previously. This term represents how
the nodes of the element change as a function of design and of the element filling fraction (see
Figure 3). The nodal co-ordinates of this reduced element are evaluated from

Figure 3. Integration domain and transformation for partially full elements.
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rxjn= %
nnod

n

fn(rjkn)xjn, (39)

where xjn/(bm are the global co-ordinates of the n-nodes of the parent element in the
j-direction. rjkn are the k-direction isoparametric co-ordinates of node n of the reduced
element, defined as

rjkn=bjkn. (40)

b is related to the filling fraction by

b=
!
f i : 2−D

3
fi : 3−D
. (41)

This formulation has the effect of forming a reduced element which is geometrically similar
to the parent element (see Figure 3). The total sensitivity of the nodal co-ordinate to design is
obtained by differentiating Equation (39) with respect to bm :

((rxjn)
(bm

= %
nnod

n

�(fn(rjkn)
(bm

xjn+fn(rjkn)
((xjn)
(bm

�
, (42)

where �n
nnod fn(rjjn)((xjn/(bm) is the contribution due to the domain parameterization. In

addition, the term (fn/(bm is non-zero, because fn(rjkn) is evaluated at the reduced local
co-ordinates of the element, and is therefore a function of the design variables, through the
filling fraction. Thus, in general, the shape functions may be expressed as fn(b(b), jkn), in
which case, the term (fn/(bm can be evaluated as

(fn(rjkn)
(bm

=
(fn

(b

(b

(bm

. (43)

This discussion can be clarified by introducing an example. Consider a nine-noded quadratic
element and select the shape function associated with node 1 (f1) at (j11, j21)= (1, −1), then
evaluate it at the point given by rj11=bj11, rj21=bj21. The shape function is given by

f1=
1
4

b2j11j21(1−bj11)(1−bj21). (44)

(f1/(b may be evaluated by differentiating Equation (44):

(f1

(b
=

1
4

bj11j21{−b [(1−bj11)j21+ (1−bj21)j11]+2(1−bj11)(1−bj21)} (45)

=
1
2

b{1−2b2}, (46)

and (b/(bm is given by

(b

(bm

=
1

2
fi

(fi

(bm

. (47)

Therefore, it is clear that the filling fraction sensitivity will affect the velocity sensitivity, even
though the filling fraction does not appear explicitly in the Navier–Stokes equations. The
filling fraction, and thus its sensitivity dfi/dbm, are computed before the velocity sensitivity, so
(b/(bm and thus dJ−T/dbm, etc. can be evaluated readily. The following section describes the
computation of the filling fraction sensitivity.
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3.1.3. VOF sensiti6ity. To compute the filling fraction sensitivity, we begin by differentiating
Equation (7) with respect to the design variables bm :

df i
n+1

dbm

=
df i

n

dbm

+
Dt
Vi

2

�
Vi %

k

dQik
n

dbm

−%
k

Qik
n dVi

dbm

n
+
� 1

Vi

%
k

Qik
n n d(Dt)

dbm

. (48)

It is clear from Equation (48) that the sensitivities of several quantities must be computed.
These include the flow rate sensitivity dQik

n /dbm, the element volume sensitivity dVi/dbm, and
the sensitivity of the filling time step, d(Dt)/dbm.

The flux Qik
n is composed of two parts, an integrated flux and a contact area factor, as

shown in Equation (8). Thus, the flux sensitivity can be expressed as

dQik
n

dbm

= −aik

�&
Vk

!dun

dbm

· n̂+un ·
dn̂

dbm

"
dVk

n
−

daik

dbm

&
Vk

un · n̂ dVk. (49)

The term dun/dbm is the velocity sensitivity from the previous time step, because the filling
fraction sensitivity is computed before the velocity sensitivity and is therefore known. The
effect of the filling fraction sensitivity on the velocity sensitivity was discussed in Section 3.1.2.

dn̂/dbm is the sensitivity of the unit normal direction for element side k. This term is zero,
unless the design variable defines the shape, in which case dn̂/dbm is readily computed from the
domain parameterization and element description [40].

Finally, daik/dbm relates the flow front shape to the design. The filling front position is
reconstructed from the filling fraction of partially filled elements and their neighbors. As
previously indicated, there are several possible configurations that are considered to recon-
struct the interface. Using the filling fraction sensitivities from the previous time step, daik/dbm

can be computed readily through algebraic combinations of these sensitivities.
The volume (i.e. the area in 2D) of element i, Vi, is computed algebraically:

Vi=0.25(ch−df), (50)

where

c=x12+x13− (x11+x14), d=x22+x23− (x21+x24), f=x13+x14− (x11+x12),

h=x23+x24− (x21+x22).

As before, xjn are the j-direction co-ordinates of node n of the element. This equation also
holds for straight-sided nine-noded quadrilaterals used in this work. Thus, the sensitivity
expression is straightforward:

dVi

dbm

=0.25
�

c
dh

dbm

+h
dc

dbm

−d
df

dbm

− f
dd

dbm

n
, (51)

where

dc
dbm

=
dx12

dbm

+
dx13

dbm

−
�dx11

dbm

+
dx14

dbm

�
, (52)

dd
dbm

=
dx22

dbm

+
dx23

dbm

−
�dx21

dbm

+
dx24

dbm

�
, (53)

df
dbm

=
dx13

dbm

+
dx14

dbm

−
�dx11

dbm

+
dx12

dbm

�
, (54)
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dh
dbm

=
dx23

dbm

+
dx24

dbm

−
�dx21

dbm

+
dx22

dbm

�
. (55)

dxjn/dbm are the sensitivities of the j-direction co-ordinates of node j to design variable m,
as given by the domain parameterization. Similar expressions may be derived for 2D
axisymmetric and 3D elements.

Finally, the time step for integration of the VOF equation is computed from Equation (9).
The sensitivity of the time step is forced to be zero by specifying the time step sizes a priori.
This is accomplished by running the algorithm on the base design with no subcycling, and
recording the time steps used. These recorded time steps are the minimum of Dtfill and Dtflow

(see Equations (9) and (10)) for which the non-linear iteration converged. These time steps are
then used for all subsequent gradient and function evaluations, and are thus independent of
design.

4. EXAMPLE APPLICATION

An example casting is created to illustrate a design optimization method based on the
sensitivity computations described in the previous chapters. A thick block casting is fed from
two runners through four ingates. The design is symmetric, and the runners and gates are sized
according to the published design rules [1]. Physical experiments have also been performed to
evaluate the applicability of the mixing length model to casting-mold filling flows, and to
evaluate the success of the optimal design. The results of these experiments are presented in a
separate publication [42].

4.1. Sensiti6ity 6erification

Prior to performing the example optimization, the analytical sensitivities computed by the
newly-developed algorithm are checked by comparison with finite difference approximations.
The discrepancy between the analytical and finite-difference sensitivities is an order of 10−4%
of the sensitivity value, as illustrated in Figure 4 for a typical test problem. Table I shows the
computational advantage of evaluating the sensitivities analytically.

The data in the table suggests the approximate sensitivity cost formula: Cm=
(h+zm) � tBase, where Cm is the additional cost of evaluating m sensitivities, and tBase is the
base simulation time. h and z are constants. Therefore, h and z may be evaluated for this
problem, giving

Cm= [0.1+0.14m ] � tBase. (56)

Whereas, for a finite difference calculation, Cm=m � tBase.

4.2. Geometry, mesh and boundary conditions

Figure 5 shows the geometry and mesh used as the base design in this example. The choke
area at the sprue base, upon which the other areas are based, is computed to give an
AFS-recommended pouring rate of 4 lb s−1 (8.8 kg s−1) for aluminum. The recommended
sprue:runner:ingate area ratio is 1:4:4. Assuming uniform thickness in the z-direction, the
sprue, runner and gate widths (in 2D) are 24.1, 48.5 and 24.2 mm, respectively. The runner
cross-section is reduced after the first ingate to promote uniform filling through all the ingates.
Additionally, the ingate further from the sprue is 5% larger than the one closer to the sprue,
to compensate for frictional loss. Finally, the radius of the bend in the runner is 25.4 mm.
These dimensions and adjustments are all consistent with the existing design rules [1].
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Figure 4. Percentage difference between analytical and finite difference shape sensitivities.

The finite element mesh consists of 314 nine-noded quadrilateral elements and 1414 nodes.
Quadratic elements are specifically chosen to enhance the performance of the algorithm,
because large elements permit larger time steps (see Equation (9)). This element type permits
the use of a nodal density sufficient to resolve the boundary layer, but with larger elements.

The sprue itself is not modeled. Instead, a pressure boundary condition is applied at the inlet
of the model, which corresponds to the sprue base. The prescribed pressure of 9.13 MPa is
equivalent to a 355 mm head of aluminum. The no-slip boundary condition is applied to all
walls except the center line, where a symmetry boundary condition is applied ((uy/(x=0 and
ux=0). Finally, gravity acts in the direction shown in Figure 5.

4.3. Base solution

The filling pattern for the base design shown in Figure 6 was first determined. This pattern
indicates that mold gas aspiration will potentially occur in two locations in the runner system
(labeled regions A and B and shaded in Figure 6). The shaded regions are bounded by the
runner walls and the fluid front, given by the 0.5 filling-fraction contour. In these regions, the
fluid momentum is so high that the stream cannot conform to the shape of the runner as it
bends. As a result, pockets of low-pressure liquid (eddies) or air may form at these locations,

Table I. Comparison of analytical and finite-difference sensitivities

Time in CPU (s)No. design
variables

Analytical Finite-difference Time savingsBase
(%)sensitivities sensitivities

27 225 61 125 1252 20 375
397203 75040 98820 3759
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Figure 5. 2D finite element mesh showing the base design.

and mold gases may be aspirated into the metal. Therefore, to reduce the possibility of
mold-gas aspiration and churning of the liquid stream, the runners will be designed so that
these pockets do not form.

4.4. Optimization formulation

4.4.1. Objecti6e. The design objective is to eliminate the low pressure regions in the runner
system. This can be accomplished by maximizing the amount of fluid in contact with the walls
of the runners in the target locations A and B. This will force the runners to conform to the
desired shape of the fluid stream, thereby discouraging flow separation in regions A and B. To
achieve this, an objective function G is defined, to be maximized, where

G= %
NA

i

fi+ %
NB

j

fj, (57)

where fi is the ith element filling fraction, NA and NB are the number of elements in regions
A and B respectively.

4.4.2. Design 6ariables. Eight design variables are chosen to parameterize the shape of the
runners. To facilitate an automated optimization scheme, the domain is parameterized so that
a single design variable describes the movement of all nodal co-ordinates in the mesh change
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in response to changes in that variable. Thus, the part shape and mesh can be modified simply
by changing the design variables, using

xj=xj
o+%

m

dxj

dbm

Dbm, (58)

following the natural design method developed by Choi et al. [39] and Tortorelli et al. [40]. xj

are the new j-direction co-ordinates of any node in the mesh, and xj
o are their initial values.

Such a domain parameterization permits the quantity �n
nnod fn(rjkn)((xjn/(bm) in Equation (42)

to be defined a priori. Figures 7 and 8 show the runner shape changes and corresponding mesh
deformations for the eight design variables for Dbi=10. To highlight the domain parameteri-
zation, the outline of the undeformed shape is superimposed on the deformed mesh, and the
region of interest is shaded.

4.5. Optimization algorithm

The optimization methodology is summarized in Figure 9. It is completely automated, once
the domain parameterization and objective definition are complete. The analytical sensitivities
of the fluid front position, given by the element filling fractions, is computed by the modified
version of FIDAP™. From these solution sensitivities, the objective sensitivities are evaluated
and passed to DOT [43], a commercially available optimization code, along with the value of
the objective. The numerical optimizer systematically modifies the design variables to maximize
the objective. The BFGS algorithm was chosen because the only constraints in the optimiza-
tion problem are ‘side constraints’, i.e. limits on the maxima and minima for the components
bm.

Figure 6. Base solution at t=0.15 and 0.185 s showing target regions A and B.
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Figure 7. Mesh deformation for design variables b1–b4.

4.6. Optimization results

Figure 10 shows the history of the objective function for this optimization. The optimization
is terminated when the objective between two consecutive iterations differs by B0.1%. The
initial objective value is scaled to unity.

At termination, the objective was improved by 27%. This change in the objective corre-
sponds to a change in the solution, as shown in Figure 11. As this figure shows, when viewed
in comparison with the base solution in Figure 6, the optimization produces the desired effect
of eliminating the pockets formed in runners. Figure 12 clearly shows the runner shapes of the
optimal design compared with the outline of the original shape.

Figure 8. Mesh deformations for design variables b5–b8.
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Figure 9. Schematic of optimization method.

The optimal runner shapes are reasonable in relation to the expected result. To minimize the
likelihood of fluid separation in the runner system, the radius of curvature of the bends should
be as large as possible. It is clear from the result that this configuration is achieved at two of
the critical turns in the runner system.

5. CONCLUSION

The results of this work clearly show that a design optimization methodology, combining finite
element analysis and analytical sensitivity computation, can be applied successfully for rigging
design. Future work will focus on two areas. The first is to verify the suitability of the mixing
length model for modeling turbulence in simple filling examples, by conducting physical tests.
The second is to apply the method to more complex filling situations, for which the VOF
method is particularly suited. Additionally, in future applications, other objectives and
constraints will also be investigated. For example, maximizing the filling rate while avoiding
mold erosion is possible. In this case the constraint will involve the shear stress at the runner
wall.
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Figure 10. Optimization history.

An additional challenge is to improve the performance of the sensitivity algorithm. The
speed of the algorithm is critical to the feasibility of performing 3D filling optimizations.
Faster simulations are possible by allowing filling time steps to subcycle within flow time steps.
In the current implementation, the overall time step is forced to be the minimum of the
Courant time step (for filling) and the variable time step (for flow). To compute the flow field
sensitivities in the subcycling case, the contribution of the variable time step sensitivity will
have to be included.

Figure 11. Optimal solutions at t=0.15 and 0.185 s.
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Figure 12. Deformed mesh representing optimal runner shapes.

Finally, because of the case-based nature of the VOF implementation in FIDAP™, the
filling solution is not continuous in design space. This fact is particularly evident when
checking the analytical sensitivities by a finite difference. For perturbations as small as 1.0E-6
in the design variables, different paths through the code are sometimes chosen. This is
equivalent to a bifurcation in the design space for that value of the design variable, making
comparisons of the finite difference values with the analytical values inaccurate. Therefore,
although the gradients are evaluated correctly at a certain design, a step in the resulting search
direction may actually have an unpredicted effect. However, this is also the case for irregular
but continuous objective surfaces with many peaks and valleys. In these cases, as in the current
work, more gradient evaluations will be necessary to traverse the design space successfully.
This fact further underscores the need to compute the gradients in an efficient manner, such
as that used in this work.
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APPENDIX A. NOMENCLATURE

Description ValueSymbol

A(Ui) finite element advection matrix
b vector of design variables

gradient operator matrixC
D(Ui) finite element diffusion matrix
F finite element force vector

vector of constraintsFi(C, b)
fi filling fraction for element i

Froude numberFr Uc
2/gL

g acceleration due to gravity, mm s−2 9810
g bodyforce vector per unit volume

scalar objective functionG(C, b)
Graetz number Uch/aGz
Jacobian of finite element transformationJ Q

pfJ Jacobian for a partially filled element
fJ Jacobian for a completely full element

turbulent mixing length, mmlt
global finite element global stiffness matrixK
finite element mass matrixM

n̂ unit normal to element side
continuum pressurep
global pressure solution vectorP

qik normalized flow rate across side k of element i, mm2 s−1

Qik flow rate across side k of element i, mm2 s−1

global finite element residual vectorR
Re Reynolds number rUcL/m
S magnitude of strain rate tensor g; :g;

time, st
characteristic velocity, mm s−1Uc

continuum velocity vectoru
Ui global nodal velocity solution vector in the i-direction

volume of element i in real space, mm3Vi

volume of element i in reference space, mm3Vo

xjn global j-direction co-ordinate of node n in parent element
rxjn global j-direction co-ordinate of node n in reduced element

Weber number rUcL/s tWe

Greek letters

aik geometric factor which scales qik function of fi
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thermal diffusivity, mm2 s−1 k/rcpa

mixing-length model-boundary layer depth, mmd

residual convergence toleranceeR 10−6

solution convergence-rate tolerance 10−6eC

velocity interpolation (shape) functionf

Courant number :0.2G
strain rate tensorg;
ij-component of strain rate tensor ((ui/(xj)+((uj/(xi)g; ij
Von Karman constantk 0.41
empirical mixing length constant 0.09l

viscosity, gmm−1 s−1m 1.4×10−3

molecular viscositymo

turbulent eddy viscositymt

u VOF pseudo-concentration variable
density, g mm−3r 2.7×10−3

surface tractions, N mm−2si

surface tension coefficient of liquid Al in air, N mm−1s t 1.6
k-direction isoparametric co-ordinate for node n in parentjkn

element
k-direction isoparametric co-ordinate for node n in reducedrjkn

element
C global solution vector C(Ui, P)

pressure interpolation (shape) functionc
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